### Master of Science in Computational Physics

## Entrance requirements

Subject to the provision of the Academic General Regulations for Post-Graduate programmes and the Academic General Regulations for Masterâ€™s degrees programmes, the following Special Regulations shall apply: The minimum entry requirements for the Master of Science in Computational Physics shall be a B.Sc. or B.Ed. or B.Eng. (Electrical & Electronic Eng.) degree with majors in Physics or related discipline from UNISWA or any other recognized institution, with at least a second class (second division) pass or equivalent, and minimum average of a C grade (60 %) in Physics or Physics related courses.

**Duration:**** **

4 Semesters (2 years)

Semester I

Core Courses

Code | Title | L | P | Cr |
---|---|---|---|---|

PHY601 | Advanced Computational Physics | 2 | 3 | 4 |

PHY603 | Computational Statistical Methods | 2 | 3 | 4 |

PHY605 | Research Methods in Physics | 0 | 2 | 1.3 |

PHY607 | Advanced Quantum Mechanics | 3 | 0 | 3 |

Electives

Code | Title | L | P | Cr |
---|---|---|---|---|

PHY631 | Advanced Condensed Matter Physics | 3 | 0 | 3 |

PHY633 | Topics in Atomic and Molecular Physics | 3 | 0 | 3 |

PHY635 | Energy and Environmental Physics | 3 | 0 | 3 |

Semester II

Core Courses

Code | Title | L | P | Cr |
---|---|---|---|---|

PHY602 | Tools of High Performance Computing | 0 | 6 | 4 |

PHY604 | Advanced Statistical Physics | 3 | 0 | 3 |

PHY606 | Quantum Computing | 3 | 0 | 3 |

PHY690 | Graduate Seminars in Physics | 0 | 2 | 1.3 |

PHY608 | Ethics and Law in Science | 2 | 0 | 2 |

Electives

Code | Title | L | P | Cr |
---|---|---|---|---|

PHY632 | Computational Nanoscience: Theory and simulations | 2 | 2 | 3.3 |

PHY634 | Special Topics in Theoretical Physics | 3 | 0 | 3 |

PHY636 | Numerical Weather Predictions | 2 | 3 | 4 |

Semester III

Code | Title | L | P | Cr |
---|---|---|---|---|

PHY699 | Master's Thesis | 6 |

Semester IV

Code | Title | L | P | Cr |
---|---|---|---|---|

PHY699 | Master's Thesis | 6 |

## COURSE DESCRIPTIONS

** PHY601 Advanced Computational Physics (Core, 2L3P)**

*Theory (2 hours) *

Introduction and comparison high level programming in Fortran/C++ or related languages.
Numerical methods for solving differential equations. Dynamics system, chaos, and iterated
maps. Computational methods for nonlinear systems: Monte Carlo methods, Dynamics
simulations and emergence of thermodynamics. Ising model. Percolation and complex networks.
Techniques in computational materials science.

*Practical (3 hours)*

The laboratory sessions are part of PHY601 teaching to provide students with hands-on
computer work in C++/FORTRAN 95 programming. The students will also have access to the
computer laboratory to work through a series of problems assigned to them based on the topics
listed above with the assistance of the course instructor.

** PHY603 Computational Statistical Methods (Core, 2L3P)**

*Theory (2 hours)*

Introduction to R-programming. Experimental data and probabilities. Statistical models and
probability distributions. Estimation, errors and uncertainty. Orthodox hypothesis testing.
Linear models and regression. Binomial and Poisson distributions. Estimation of parameters.
Likelihood-based (Bayesian) parametric modeling. Maximum likelihood and density estimation.
Use and abuse of statistics.

*Practical (3 hours)*

The laboratory sessions are part of PHY603 teaching to provide students with hands-on
computer work in R programming. Practical sessions will cover the following topics: working
with real data in R. Solving Equations and Optimization in R. Simulations. Statistical analysis
with R.

** PHY605 Advanced Research Methods in Physics (Core, 2L0P)**

*Theory (2 hours)*

Curiosity and scientific inquiry. Developing an appropriate research question. Graphical analysis
of data. Scientific information: searching for scientific articles, giving scientific presentation.
Writing a scientific manuscript for publication. Science and Society. Write and research proposal
(grant)

** PHY607 Advanced Quantum Mechanics (Core, 3L0P)**

*Theory (3 hours)*

Fundamental concepts. Quantum dynamics: Schrodinger and Heisenberg picture. Harmonic
oscillator and coherent states. Potential and gauge transformations. Angular momentum.
Quantum Entanglement, Symmetries: parity and time reversal. Approximation methods: Time-
independent and time-dependent perturbation theory. Introduction to Quantum Field Theory.

** Advanced Condensed Matter Physics (Elective, 3L0P)**

*Theory (3 hours)*

Crystal structure, crystal binding, lattice vibrations, Fermi surfaces, energy bands, classification
of solids. Electron and phonons in solids, semiconductors, superconductivity, and magnetism.
Survey topics in soft matter: polymers, colloids, and liquid crystals.

** PHY633 Topics in Atomic and Molecular physics (Elective, 3L0P)**

*Theory (3 hours)*

Free and bound atoms: observation and measurements. QM descriptions of many electron
systems. Relativistic effects in atoms. Atomic and molecular term symbols. Orbital theory and
potential energy surfaces. Quantum chemistry techniques. Polyatomic molecules and group
applications. Molecular spectroscopy and other experimental techniques. Molecular dynamics
and photochemistry.

** PHY635 Energy and Environmental Physics (Elective, 3L0P)**

*Theory (3 hours)*

Energy source, fossil fuels, nuclear energy, renewable energy and energy efficiency.
Environmental consequence of energy use: climate change, nuclear radiation, air and water
pollution, etc.

** PHY602 Tools of High Performance Computing (Core,0L6P)**

*Practical (6 hours)*

Programming for efficiency. High performance computers, Memory hierarchy, CPU Design:
Multiple-core processors Parallel semantics. Parallelization strategy, Shared memory
programming. Distributed memory programming, Example of a supercomputer: IBM Blue
Gene/L. Programming for efficiency. Exercises on parallel computing. Parallel performance,
Shared memory programming. Distributed memory programming. GPU programming. Good
and bad virtual memory use. Python vs Fortran/C++, Practical tips for multicore, GPU
programming.

** PHY604 Advanced Statistical Physics (Core, 3L0P)**

*Theory (3 hours)*

Interacting systems: Ising model, phases. Symmetry breaking. Mean field Theory. Fluctuations.
Elementary excitations. Renormalization group and scaling.

** PHY606 Quantum Computing (Core, 3L0P)**

*Theory (3 hours)*

Quantum entanglement theory, quantum communication and cryptography, Quantum Shannon
theory, quantum computation and algorithms, quantum error correction, implementation of
quantum computation and communications.

** PHY690 Graduate Seminar in Modeling and Physics (Core, 0L2P).**

*Practical (2 hours)*

Graduate students are required to attend weekly seminar series that will involve guest speakers,
lecturers and students presentations on cutting edge research in Physics-related fields. All M.Sc.
students will be slated to make 30 minutes presentations on recent scientific publication (from a
reputable journal) that is related to their research area. Each presentation will be followed by a
10 minute question period. The students are required to submit reports summarizing the
information presented in a selected number of seminars.

** PHY608 Ethics and Law in Science (Core, 2L0P).**

*Theory (2 hours)*

Fundamental theories of contracts. Rights and responsibilities. Conflict of interest (real and
apparent). Acquisition, management, sharing and ownership of data. Patent rights. Publication
practices and authorship. Peer review. Research misconduct (fabrication, falsification and
plagiarism). Questionable research

** PHY632 Computational Nanoscience (Elective, 2L3P)**

*Theory (2 hours)*

Computational application for molecules, clusters, quantum nanostructure. MD and interatomic
potentials, Monte Carlo simulations of nanostructures, Multiscale methods : Phase field crystal
models, Electronic structure methods: DFT and Hatree-Fock.

*Theory (3 hours)*

The laboratory sessions are part of PHY632 teaching to provide students with hands-on
computer on developing algorithms and computer program for MD simulations, solving Phase
field model, DFT calculation in their preferred programming environment.

**PHY634 Special Topics in Theoretical Physics (Elective, 3L0P)**

*Theory (3 hours)*

Discussions of recent topics relevant for condensed matter, nuclear, and particle physics
research. Such topics will include classical mechanics, fluid mechanics, electromagnetic theory,
statistical mechanics, and quantum field theory, particle physics.

**PHY636 Numerical Weather Prediction (Elective, 2L3P)**

*Theory (2 hours)*

Fundamentals of Numerical Weather Predictions. Basic wave oscillation in the atmosphere:
gravity and sound waves, weather waves . Chaotic behavior: growth rate of errors and the limit
of predictability. Atmosphere predictability. Role of Oceans and land in climate predictability.
Data Assimilation.

* Practical (3 hours) *

The laboratory sessions are part of PHY636 teaching to provide students with hands-on
computer on developing numerical algorithms for solving mathematical models for weather
forecasting and simulations of weather patterns.

**PHY699 M.Sc. Thesis Research**

An M.Sc. candidate will undertake an independent original research on a topic that applies in
Computational Physics techniques under the guidance of an advisor(s) in the specialized field of
study. The title and planning of the study is to be determined jointly by the student and his/her
advisor(s), and the research is designed to include thesis presentation and thesis defense to be
presented as partial requirement for the M.Sc. degree in Computational Physics.